The results from the experiment demonstrate that heart rate, microclimate (temperature, humidity) and subjective ratings were significantly influenced by the wearing of different kinds of facemasks. Nielsen et al. (1987) observed that delivery of air with different temperatures into a facemask corresponded to the application of a local thermal stimulus to the skin surface around the mouth, nose and cheek. This local thermal stimulus also affected the heat exchange from the respiratory tract. In our investigation, microclimate temperature, humidity and skin temperature inside the facemask increased with the start of step exercise, which led to the different perceptions of humidity, heat and high breathing resistance among the subjects wearing the facemasks. High breathing resistance made it difficult for the subject to breathe and take in sufficient oxygen. Shortage of oxygen stimulates the sympathetic nervous system and increases heart rate (Ganong 1997). It was probable that the subjects felt unfit, fatigued and overall discomfort due to this reason. White et al. (1991) found that the increases in heart rate, skin temperature and subjective ratings may pose substantial additional stress to the wearer and might reduce work tolerance. This could be the reason why Farquharson reported that working 12-h shifts while wearing an N95 mask had indeed been a challenge to their ED staff (Farquharson and Baguley 2003).
Significant differences were observed between N95 and surgical masks. Mean heart rate, microclimate temperature, humidity and skin temperature inside the facemask, together with perceived humidity, heat, breathing resistance in the facemask, and itchiness, fatigue and overall discomfort, were significantly (P<0.01) higher for N95 masks than for surgical masks. In other words, the subjective perception of breathing difficulty and discomfort increased significantly with increasing thermal stress. This finding agrees with the observations reported by White et al. (1991). The surface temperature outside the facemask was lower, and the temperature in the facemask microclimate was significantly higher, for the N95 masks than for the surgical masks (Fig. 3), indicating that the heat loss from the respiratory tract is more difficult to endure in N95 masks, inducing higher heat stress and perception of discomfort. This agrees well with the observations reported by Hayashi and Tokura (2004).
As the purpose of wearing the facemasks is to protect the wearers by filtering out viruses and bacteria, it is obviously questionable whether the surgical masks, which induce less heat stress and discomfort, can provide enough protection for healthcare workers. As reported previously, the in vivo filtration efficiency and physical properties of the masks were investigated at the same time (Li et al., unpublished data). During the simulation wear trials, in vivo filtration efficiency of N95 facemasks was 96%, in comparison with 95% for surgical facemasks. Furthermore, the surgical facemasks with significantly higher moisture permeability and air-permeability were thinner than the N95 facemasks, indicating that surgical facemasks should be more breathable and less humid and hot, which agrees with the in vivo measurements of temperature and humidity inside and outside the masks and the subjects’ perception of breathing resistance and discomfort.
It is interesting to note that no significant difference was found between nano-treated and untreated facemasks for physiological measurements and subjective perceptions, even though nano-treated surgical and N95 facemasks were perceived to be slightly less uncomfortable. On the other hand, subjective preferences for the nano-treated surgical masks were significantly higher than those for the untreated surgical facemasks. This indicates that the nano-functional treatment of surgical and N95 facemasks does not have significant negative effects on the thermophysiological responses and subjective perceptions of discomfort.
Therefore, it can be concluded that N95 and surgical facemasks can induce significantly different temperatures and humidity in the microclimates of facemasks, which have profound influences on heart rate and thermal stress and subjective perception of discomfort.